Initial-boundary-value Problems for the Bona-smith Family of Boussinesq Systems

نویسندگان

  • Dimitrios Antonopoulos
  • Vassilios Dougalis
  • Dimitrios Mitsotakis
  • D. C. Antonopoulos
  • V. A. Dougalis
  • D. E. Mitsotakis
چکیده

In this paper we consider the one-parameter family of Bona-Smith systems, which belongs to the class of Boussinesq systems modelling two-way propagation of long waves of small amplitude on the surface of water in a channel. We study three initial-boundary-value problems for these systems, corresponding, respectively, to nonhomogeneous Dirichlet, reflection, and periodic boundary conditions posed at the endpoints of a finite spatial interval, and establish existence and uniqueness of their solutions. We prove that the initial-boundary-value problem with Dirichlet boundary conditions is well posed in appropriate spaces locally in time, while the analogous problems with reflection and periodic boundary conditions are globally well posed under mild restrictions on the initial data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of Boussinesq systems of the Bona-Smith family

In this paper we consider the one-parameter family of Bona-Smith systems, which belongs to the class of Boussinesq systems modelling two-way propagation of long waves of small amplitude on the surface of water in a channel. We study numerically three initial-boundary-value problems for these systems, corresponding, respectively, to homogeneous Dirichlet, reflection, and periodic boundary condit...

متن کامل

Boussinesq Systems of Bona-Smith Type on Plane Domains: Theory and Numerical Analysis

We consider a class of Boussinesq systems of Bona-Smith type in two space dimensions approximating surface wave flows modelled by the three-dimensional Euler equations. We show that various initial-boundary-value problems for these systems, posed on a bounded plane domain are well posed locally in time. In the case of reflective boundary conditions, the systems are discretized by a modified Gal...

متن کامل

Numerical solution of coupled KdV systems of Boussinesq equations: I. The numerical scheme and existence of generalized solitary waves

We consider some Boussinesq systems of water wave theory, which are of coupled KdV type. After a brief review of the theory of existence-uniqueness of solutions of the associated initial-value problems, we turn to the numerical solution of their initialand periodic boundary-value problems by unconditionally stable, highly accurate methods that use Galerkin/finite element type schemes with perio...

متن کامل

The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008